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Abstract
Multi-label text classification (MLTC) is the task that assigns each document to the most relevant subset of class labels.
Previous works usually ignored the correlation and semantics of labels resulting in information loss. To deal with this
problem, we propose a new model that explores label dependencies and semantics by using graph convolutional networks
(GCN). Particularly, we introduce an efficient correlation matrix to model label correlation based on occurrence and co-
occurrence probabilities. To enrich the semantic information of labels, we design a method to use external information from
Wikipedia for label embeddings. Correlated label information learned from GCN is combined with fine-grained document
representation generated from another sub-net for classification. Experimental results on three benchmark datasets show that
our model outweighs prior state-of-the-art methods. Ablation studies also show several aspects of the proposed model. Our
code is available at https://github.com/chiennv2000/LR-GCN.

Keywords Graph convolutional network · Multi-label classification · Correlation matrix · Label embedding ·
Label correlation

1 Introduction

Multi-label text classification (MLTC) is a subproblem of
text classification that classifies input text/documents into

� Van-Hau Nguyen
haunv@utehy.edu.vn

Huy-The Vu
thevh@utehy.edu.vn

Minh-Tien Nguyen
tiennm@utehy.edu.vn

Van-Chien Nguyen
chien.nv183488@sis.hust.edu.vn

Minh-Hieu Pham
phamhieu30091997@gmail.com

Van-Quyet Nguyen
quyetict@utehy.edu.vn

1 Hung Yen University of Technology and Education,
Hung Yen, Vietnam

2 Hanoi University of Science and Technology, Hanoi, Vietnam

3 Foreign Trade University, Hanoi, Vietnam

pre-defined classes (labels) [1]. MLTC can be applied to
a wide range of applications such as patent classification
[2], sentiment analysis [3], and mobile applications [4].
Different from multi-class classification which only assigns
one label to the given text, multi-label classification
classifies the text into the most relevant multiple labels from
the label set [5]. Formally, let D be a set of n documents,
Y = {c1, c2, . . . , ck} be the label space with k class
labels, X = R

n×m denotes the m dimensional feature
space corresponding to n documents. The task is to learn
a mapping function h : X → 2|Y | from the training set
D = {xi , Yj‖1 ≤ i ≤ n and 1 ≤ j ≤ k}, where xi ∈ X is
a feature vector of the document ith and Yj ⊂ Y is a set of
labels of xi . In MLTC tasks, multiple labels can be assigned
to a given document. This results in an increase in the co-
occurrence frequency of labels [6]. Therefore, it is desirable
to model such label correlation to improve the classification
performance of MLTC models.

Recently, deep neural networks for multi-label text
classification have been investigated [1, 5–9]. The networks
try to automatically learn the text representation by using
different architectures such as CNN [1], RNN [5], or
BERT-based methods [10, 11]. However, these works often
focus on exploring document information and ignore label
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information. This may lead to information loss. Let’s take
Table 1 as an example.

We can observe two interesting points from the table.
The first one is that some labels appear in the text (e.g.
bold words). This shows that label semantics need to be
taken into consideration when learning the hidden pattern
of text, which can contribute to the performance of multi-
label classifiers. The second observation is that labels occur
(e.g. bean, oilseed) and co-occur in multiple documents
(e.g. corn, grain). This raises a question about how to
model correlation among labels effectively, in order to
improve classification performance. Prior works [5, 12,
13] attempted to use label information for improving
classification performance. However, these methods only
focus on exploring label semantics, by using attention
mechanisms. Recently, models based on graph neural
networks (GCN) have been introduced to capture label
correlation [11, 14]. However, modeling label correlation in
such GCN-based models is still challenging because of the
over-smoothing problem [14]. Furthermore, these models
often ignore node embedding initialization [11].

To overcome the issues raised above, we propose a
new model that explores both label correlation and label
semantics by using the graph convolutional network for
the MLTC task in this paper. To capture label correlation,
we design a correlation matrix using the occurrence and
co-occurrence probabilities of labels. The label correlation
is modeled in a modified form of point-wise mutual
information, which is widely used in computational
linguistics to capture associations between words [15]. This
matrix allows the model to effectively propagate label
information among GCN nodes. For label semantics, we
use word embeddings of labels to initialize node features
which are often ignored in other GCN-based models
[11, 15]. More importantly, to enhance label embeddings,

we propose a simple method using external language
resources. Simultaneously, we adopt a BERT-based model
(i.e. RoBERTa [16]) as another sub-net to extract fine-
grained information from input documents. Both label and
document representations are then combined before being
fed to a fully-connected neural network for classification.
Evaluation results on three benchmark datasets show that
our model outweighs prior state-of-the-art classification
methods. In addition, ablation studies are also conducted to
explore more insights into the proposed model.

In summary, the main contributions of this paper are
summarized as follows:

• We propose a new end-to-end trainable multi-label text
classification model. The proposed model takes into
account the combination of label information learned by
GCN and contextual document representations using a
BERT-based model.

• We build an effective correlation matrix to guide
label information propagated among label nodes.
Furthermore, in order to improve label representation
learning, we propose to enhance the word embedding of
labels by using external language resources to initialize
node features.

• We conduct extensive experiments to evaluate the
proposed model, then compare it with strong baselines.
We also perform ablation studies to deeply analyze
several important aspects of the proposed model.

The remainder of this paper is organized as follows:
Section 2 overviews related works for multi-label text
classification. Section 3 describes the proposed model.
Section 4 presents the experiments to validate the
effectiveness of the proposed model and also ablation
studies to explore some aspects of the model. The
conclusion is summarized in Section 5.

Table 1 The text and labels of
three samples in the
reuters-21578 dataset

Sample Text Label

1 CHINA SWITCHES U.S. WHEAT TO...The
department said outstanding wheat sales to China
for...Total corn commitments for the...

corn, grain, wheat

2 ...The USSR has purchased 2.40 mln tonnes of
U.S. corn for...amounted to 152,600 tonnes of
wheat, 6,808,100 tonnes of corn and 1,518,700
tonnes...

acq, corn, grain

3 ...The corn wet milling business acquired by the
Italian group...it had agreed in principle to sell its
European corn wet millng business...

corn, grain, oilseed, soybean, wheat

Bold words appear in the label set
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2 Related work

The existing models for multi-label classification can be
categorized into two main groups: document-based and
document-label-based methods.

Document-based methods These algorithms only explore
document information. In the early stage, classical machine
learning models were proposed to address MLTC [17, 18]
which could be solved by either the data transformation
approach [17] or the algorithm adaptation approach [18].
However, these methods are limited by the need for
tedious feature engineering and analysis to achieve good
performance. Furthermore, it is difficult to generalize to
new tasks because of the strong dependence on domain
knowledge for designing features. In recent years, deep
learning-based models have been shown as a powerful tool
for MLTC tasks, without the requirement of handcrafted
features. In these models, the main idea is to automatically
learn the hidden representation of text by using a large
number of training samples. One of the first attempts
was introduced by [19]. The authors used a convolutional
architecture, namely dynamic CNN to take advantage of a
changeable width of convolutional layers with dynamic k-
max pooling to detect sequences of words for indicating
the topics. After that, several architectures have been
investigated to learn hidden representations such as CNN
[1], LSTM [5, 20], graph convolution neural network (GCN)
[7, 15, 21], or transformers [10, 11]. To improve the quality
of classifiers, attention mechanisms have been adapted for
MLTC [11, 12]. These methods operate on hidden vectors
to force classifiers to focus more on important words
regarding labels (please refer to Table 1). Although the
models mentioned above have achieved quite promising
results for MLTC tasks, ignoring label information may lead
to information loss [11–13]. Therefore, we argue that MLTC
models need to take into account label information.

Document-label-based methods These models benefit
from label information to improve the quality of the MLTC
task [5, 11–13, 22]. In such models, multi-label classifiers
have to not only consider the content of text but also need
to explore label information, which is mostly done using
attention mechanisms. An important work in this direction
was proposed in [22]. This work views text classification
as a label-word joint embedding problem. Particularly, each
label is embedded in the same space with word vectors by
introducing an attention framework. After that, You et al.
[5]S introduced label tree-based attention based on RNN
for extreme MLTC. The authors combined a multi-label
attention mechanism for text and a probabilistic label tree
for labels. Xiao et al. [12] presented a label-specific atten-
tion network (LSAN) for MLTC. LSAN determines the

semantic relationship between labels and documents to
construct label-specific document representation by using
label semantic information. An interesting idea of using
label information was presented in [23]. In this method,
each category label is associated with a category descrip-
tion which is generated by hand-crafted templates or using
abstractive/extractive models from reinforcement learn-
ing. The description is then attended to the most salient
texts to improve classification performance. Some other
works based on attention mechanisms are hybrid attention
[13], attentional ordered recurrent neural network [9], and
history-based label attention [8]. As described above, these
works mainly consider the semantics of labels by using
attention mechanisms to integrate label embeddings into
document representation. This may not take full advantage
of label information [10].

To alleviate the limitation mentioned above, graph neural
network-based models have been introduced to take into
account both label semantics and label correlation. Cai
et al. [11] introduced a hybrid neural network that combines
label information and fine-grained text representation.
The model uses BERT for text representation combined
with a label graph for integrating label information into
the network. However, this work only explores label
correlation, ignoring the initialization of node features.
MAGNET [24] introduced a graph attention network-based
model using both label embeddings as node features and
label correlation. We share this idea with MAGNET but our
model significantly differs from it. Firstly, we propose a
new method to build a correlation matrix from input labels
(as explained and compared in Section 3.2.1). Secondly, we
use a method to enrich label embeddings before initializing
node features. Finally, our subnets of GCN, BERT, and MLP
differ significantly from MAGNET.

3 Label representative GCN for muti-label
text classification

This section describes the proposed model for multi-label
text classification. We first present a high-level view of
the proposed model architecture. We then present three
main parts of our model in more detail, including label
representation learning, document representation learning,
and classification.

3.1 Overall model architecture

As shown in Fig. 1, the proposed model consists of two
sub-nets for extracting label and document representations
and a classifier wrapped on the top. As mentioned,
our model shares the idea of [14]. However, it makes
three significant differences. First, we create an efficient
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Fig. 1 The overall architecture of our LR-GCN model for multi-
label text classification. For label representation learning, the graph
G = (V , E) is built from class labels, in which label-word embed-
dings (X ∈ R

c×d ) are used as the feature of vertices V (c is the
number of classes and d is the dimensionality of embedding vectors).
Edges E of the graph G (i.e. correlation matrix A ∈ R

c×c) are built

from occurrence and co-occurrence probabilities of labels. A stacked
GCN architecture is then adopted to learn over the graph. Its output
H ∈ R

c×d ′
is combined with the document representation vector gen-

erated from a BERT-based model. These added vectors are fed to a
fully-connected neural network W ∈ R

d ′×1 for classification

correlation matrix, which captures the dependencies among
labels. The matrix creation uses the modification of point-
wise mutual information for computing the weights of edges
in an undirected graph. On the contrary, the work in [14]
builds a directed graph with a correlation matrix modeling
the label correlation dependency in the form of conditional
probability. Secondly, we use RoBERTa [16] to extract fine-
grained document information since it has been shown to
be a powerful tool for generating document representations
[16]. Finally, our model uses a fully-connected neural
network as a classifier wrapped on the top instead of
using dot-product to calculate predicted output as in [14].
Our preliminary experimental results show that using the
classifier improves classification performance.

3.2 Label representation learning

In LR-GCN, we take into account label information
regarding both correlation and semantics. This section
presents how the correlation matrix and node features are
built and then learned using GCN.

3.2.1 Correlation matrix creation

In this paper, we consider a graph G = (V , E), where V

and E are vertices and edges of the graph G, respectively.

The graph G is represented by a correlation matrix A ∈
R

c×c (c = |V |, the number of document classes). The
correlation matrix plays an important role in propagating
label information among vertices in GCN. Therefore,
building an effective correlation matrix is a crucial task in
our model.

In LR-GCN, we build the correlation matrix in a data-
driven manner where modeling label correlation is based on
the occurrence and co-occurrence probabilities of labels. In
[14], their work modeled the label correlation dependence
in the form of conditional probability. MAGNET [24]
also adopted this kind of correlation matrix for MLTC
tasks. However, using the conditional probability for
building the matrix seems to be only suitable for capturing
the natural topology structure between label objects in
images, as presented in [14]. In contrast, we build the
label correlation matrix by using the occurrence and co-
occurrence probabilities of labels. Our matrix is based on
a modification of point-wise mutual information which
is widely used in computational linguistics to capture
associations between words [15].

To calculate the edge weight between nodes i and j ,
we count the occurrence and co-occurrence of labels to
approximate the probabilities p(i), p(j) (i.e. occurrence
times of label i and j ) and p(i, j) (i.e. co-occurrence times
of label i and j ). So each element Aij of the correlation
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matrix is defined as below:

Aij = p(i, j)

p(i)p(j)
= #L(i,j)#D

#L(i)#L(j)

(1)

where #L(i,j) is the number of documents having a pair
of labels i, j , #L(i) is the number of documents having
the label i, and #D is the total number of documents
in the dataset. Intuitively, an edge having a high Ai,j

value means that its vertices have a high correlation.
It should be mentioned that we do not use the log(.)
function of Aij in (1), as the original form of point-wise
mutual information. Our preliminary experiments show that
removing the log(.) enables training time reduction and
performance improvement.

Figure 2 illustrates an example of the matrix calculation.
Input data includes three samples with six different labels.
From input labels, we build a graph, in which nodes are
represented by labels (i.e. embedding of label words).
To calculate the correlation matrix, for example, the
element Aoilseed,soybeam (i.e. edge weight between nodes of
oilseed and soybeam), we count the number of documents
having both labels #L(oilseed,soybeam) = 1, the numbers
of documents having the label #L(oilseed) = 1, and
#L(soybeam) = 1. Consequently, Aoilseed,soybeam = 3.0.

Finally, as suggested in [25], each node needs to aggre-
gate features of all neighbors and also itself. Therefore, the
final correlation matrix is formulated as below:

Âij =

⎧
⎪⎨

⎪⎩

Aij if i �= j

1 if i = j

0 otherwise.

(2)

3.2.2 Node feature enrichment

For GCN, when l = 0 (the first layer), H(0) = X

(X ∈ R
c×d ) is the feature matrix of vertices (where d

is the dimension of the feature vectors). In existing GCN-
based models, node features are often not initialized (i.e.
feature matrix X = I as an identity matrix). However, in
our work, since label embeddings that are learned from
GCN are then combined with document representation (as
shown in Fig. 1), initializing good feature nodes from input
labels is an important task. To do this, we can simply
employ any word embedding method such as Word2vec
[26], Glove [27], and FastText [28]. While such word
representations are able to capture some syntactic as well as
semantic information, they need to be enhanced, especially
for specific domain tasks [29].

Existing methods for enriching word embeddings can be
categorized into three groups including joint, retrofitting,
and post-specialization methods, as summarized in [29].
Our work shares the idea of the retrofitting methods which
use external lexical resources to inject semantic information

into pre-trained word vector representations via post-
processing techniques but in a different way. In particular,
given an input label, we first use Wikipedia-API1 to retrieve
the most relevant Wikipedia document. In our paper, we
use external information from Wikipedia because it is an
available and huge corpus. After that, we extract only the
top two sentences that describe the label. This is based on
the observation of text summarization, in which important
information is usually mentioned in the top (two or three)
sentences [30]. Extracting these sentences allows the length
of the label description to meet with requirements of the
next step while keeping the most important information
relevant to the label, as shown in Fig. 3. Finally, instead
of injecting this external information into pre-trained word
vector representations as to the retrofitting methods, these
sentences are then fed to Sentence-BERT2 to generate label
embeddings. Our experiment results show that this method
could improve classification performance compared to other
word embeddings [26–28]. This confirms the idea of using
external information for enriching label node embeddings.

3.2.3 GCN for label information learning

GCNs are a neural network type that directly works on a
graph [25]. In GCN, each layer aggregates the information
of immediate neighbors. When stacking multiple layers
together, the GCN model can integrate information from
higher-order neighborhoods. In our work, GCN layers are
considered to be a function fgcn(.) that is based on the
correlation matrix to learn label information from the built
graph. After aggregating neighbor’s features, the output map
of label representation learning generated from GCN layers
is expressed as in (3):

H = fgcn(Â, X, Wgcn) (3)

where fgcn(.) is the GCN function, with its learnable
weights Wgcn over the input feature matrix X ∈ R

c×d (d
is the dimensionality of label-word embeddings) and the
correlation matrix Â ∈ R

c×c.

3.3 Document representation learning

This sub-net is designed to learn hidden representations
from input documents. After pre-processing, these docu-
ments are fed into the model to extract fine-grained informa-
tion. In general, we can adopt any document representation
method, as summarized in [31]. Recently, BERT and its
variation have shown to be a powerful tool for document
representation [32, 33]. In this work, we employ RoBERTa
[33], which is an improvement of BERT for this task [31,

1https://pypi.org/project/Wikipedia-API/
2https://www.sbert.net/

https://pypi.org/project/Wikipedia-API/
https://www.sbert.net/
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Fig. 2 An example of Ai,j calculation

33]. As shown in Fig. 1, the output document representa-
tion of the BERT-based model δbert (.) is then projected to
a linear layer ρ(.), in order to change its dimension from
b to d ′. Consequently, the final output of the document
representation learning part is expressed in (4):

T ′ = ρ(δbert (T , φbert )) (4)

where T and φbert are input and parameters of the BERT-
based model.

3.4 Classification

After label and document representation learnings, these
outputs are combined to generate informative features for
classification. As shown in Fig. 1, each column vector of the
label embedding matrix represents information of a label.
These label embedding vectors are then mapped into the
document representation to make it more discriminative.
Particularly, each label embedding vector Hi is added with
the document embedding T ′ before being fed into the
classifier. Formally, the ith output column vector of the
label-document embedding matrix Li is expressed as

Li = Hi + T ′ (5)

After generating the output map L ∈ R
c×d ′

, we use a fully-
connected layer W ∈ R

d ′×1 as a classifier. In preliminary
experiments, we found that adding this classifier results in
classification performance improvement compared to just
using dot-product as [14]. As in [1], we adopt Sigmoid

as a nonlinear activation function σ (.) which is applied on
the last layer to make the final prediction. As suggested in
[5], we share a weight matrix W across all labels in order

Fig. 3 An example of text extracted from an input label

to reduce the number of the proposed model’s parameters.
Consequently, the predicted output of the Li label is yielded
as below:

ŷi = σ(WT Li) (6)

where Li is the ith column vector of the output features
L. The whole network is trained by using a common loss
function for multi-label classification, as expressed as (7):

L =
c∑

i=1

(yi log((ŷi)) + (1 − yi)log(1 − (ŷi))) (7)

where c is the number of labels, yi is the ground truth label
value, and ŷi is the predicted probability value which is
calculated as (6).

4 Experiments

In this section, we conduct experiments to validate the
effectiveness of the proposed model. To do that, we first
describe datasets that are used in experiments. Then, we
present the evaluation metrics, baselines, and settings used
for experiments. Finally, we compare the empirical results
with SOTA baselines and also analyze ablation studies to
show the effectiveness of our method.

4.1 Datasets

For experiments, we use three benchmark datasets designed
for multi-label text classification to evaluate the classifica-
tion performance of our model:

• Reuters-215783 is one of the most widely used datasets
for text classification. It is collected from the Reuters
financial newswire service in 1987. In this work, we use
ApteMod which is a subset of the Routers dataset for
multi-label text categorization with 10,788 documents.
This dataset version is highly skewed, with 36.7%

3https://www.kaggle.com/nltkdata/reuters

https://www.kaggle.com/nltkdata/reuters
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of the documents in the most common class, and
only 0.0185% (2 documents) in each of the five least
common classes.

• Arxiv academic paper dataset(AAPD) was built by
[34] for multi-label text classification. It was collected
from the abstract and the corresponding subjects in the
computer science field from Arxiv.4 It is a large dataset
including 55,840 documents and 54 class labels in total.
Each document may have multiple labels.

• Reuters corpus volume I (RCV1) [35] is a newswire
collection of Reuter’s News that was manually catego-
rized for research purposes from 1996-1997. We use
this dataset since it is large-scale, with over 800,000
documents. Furthermore, the number of examples for
testing is much larger compared to training. This
enables evaluating the generalization capability of the
proposed model.

These datasets are carefully selected because they are
widely used and large-scale, as described above. This
enables us to verify the effectiveness of the proposed model.
Furthermore, we attempt to use the original version of
these datasets for making fair comparisons. In summary, the
statistics of the datasets are presented in Table 2.

4.2 Evaluationmetrics and baselines

4.2.1 Evaluation metrics

In our experiments, we adopt commonly-used metrics to
measure the performance of the proposed method. Like
other models for multi-label classification, we use the
precision at top k (P @k) and the Normalized Discounted
Cumulated Gains at top k (nDCG@k). Both metrics are
defined according to the predicted score vector ŷ ∈ R

L and
the ground truth label vector y ∈ {0, 1}L as expressed in (8),
(9), and (10):

P @k = 1

k

∑

l∈rankk(ŷ)

yl (8)

DCG@k =
∑

l∈rankk(ŷ)

yl

log(l + 1)
(9)

nDCG@k = DCG@k
∑min(k,‖y‖0)

l=1
1

log(l+1)

(10)

where rankk(ŷ) is the label indexes of the top k highest
scores of the current prediction (ŷ), ‖ y ‖0 counts the
number of relevant labels in the ground truth label vector y.
Following prior works [12], we use top k = 1, 3, 5 for both
P @k and nDCG@k. These metrics are calculated for every
single document and then averaged over all of them.

4https://arxiv.org/

Apart from P @k and nDCG@k, we also use another
standard evaluation metric to evaluate our work, Micro-F1
[36]. This metric considers the overall precision and recall
of all the labels, as defined in (11), (12), and (13):

Micro − F1 = 2PR

P + R
(11)

Precision(P ) =
∑

t∈S T Pt
∑

t∈S T Pt + FPt

(12)

Recall(R) =
∑

t∈S T Pt
∑

t∈S T Pt + FNt

(13)

where T Pt , FPt , FNt denote the true-positives, false-
positives and false-negatives for the t th label in label set S,
respectively.

4.2.2 Baselines

To show the efficiency of the proposed model, we compare
it with models that achieved state-of-the-art results on the
selected datasets. In order to make fair comparisons, we
follow two main rules for choosing the baselines: i) we
selected strong baselines that are evaluated on the same
version of the datasets (i.e. the same statistics of the datasets
as shown in Table 2); ii) we only reused the experimental
results instead of reimplementing the baselines in order to
keep their best settings and results as proposed. In addition,
we also copy the results of some well-known models that are
reimplemented and then evaluated on the selected datasets.

Document-basedmethods

• XML-CNN [1] combines the strengths of existing CNN
methods and takes multi-label co-occurrence patterns
into account. We also copy experiment results of strong
deep learning models which were evaluated in this
work, including SLEEC, FastXML, Bow-CNN, and
Kim-CNN.

• HTTN [6] proposes a head-to-tail network to transfer
the meta-knowledge from rata-rich tail labels to data-
poor tail labels. The model takes advantage of sufficient
information among head labels and label dependency
between head labels and tail labels.

• DocBERT [32] reports SOTA results for document
classification by simply fine-tuning the BERT model.
This work is selected for comparison because we also
adopt a BERT-based model for document representa-
tion. We also copy experiment results of CNN and
RNN based models which were evaluated in this work,
including Kim-CNN, XML-CNN, HAN, LSTM, and
KD-LSTM.

• VLAWE [37] is a model based on a combination
of a document representation based on aggregating

https://arxiv.org/
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Table 2 Statistics of the datasets

Datasets D N V M L L̂ L̃

Reuters-21578 10,788 6,604 1,165 3,019 90 1.23 132.07

AAPD 55,840 46,614 8,226 1,000 54 2.41 2444.0

RCV1 804,414 19,677 3,472 781,265 103 3.18 729.67

D is the number of documents, N is the number of training documents, V is the number of validating documents, M is the number of testing
documents, L is the number of class labels, L̂ is the average number of labels per document, L̃ is the average number of documents per label

word embedding vectors into document embeddings
and SVM as a classifier.

Document-label-basedmethods

• LSAN [12] proposes a label-specific attention net-
work for multi-label text classification. It uses label
embeddings to explicitly compute the semantic rela-
tions between document words and labels. In this work,
the authors also evaluated other strong deep learn-
ing methods: DXML considering the label structure
from the label co-occurrence graph, SGM applying a
sequence generation model from input documents to
output labels, AttentionXML building the label-aware
document representation, and EXAM exploiting the
label text to learn the interaction between words and
labels. We also included these methods in our compari-
son.

• AttentionXML [5] is a deep model that is based on a
multi-label attention mechanism for capturing the most
relevant part of the text to each label, and a label tree
allowing to handle millions of labels.

• HA-Seq2Seq [8] is a sequence-to-sequence-based
model. It introduces history-based label attention
to effectively explore informative representations for
predicting labels in multi-label text classification.

• HCSM [9] is a hierarchical cognitive structure learning
model composed of the Attentional Ordered Recur-
rent Neural Network (AORNN) and Hierarchical Bi-
Directional Capsule (HBiCaps). Both modules use a
global hierarchical label structure to improve classifica-
tion performance.

• HE-AGCRCNN [21] is a hierarchical taxonomy-aware
and attentional graph capsule recurrent CNNs frame-
work for large-scale multi-label text classification.
The model uses hierarchical label-dependencies among
labels to improve classification accuracy and reduce
computational complexity.

• HG-Transformer [10] is a hierarchical graph
transformer-based deep learning model for large-scale
multi-label text classification. In this work, the rep-
resentation of labels is generated using hierarchical
dependencies among labels.

• LAHA [13] is based on hybrid attention to exploiting
labels for document representation. The model includes
three parts: a multi-label self-attention mechanism to
detect the contribution of each word to labels, the
representation of label structure and document content,
and an adaptive fusion method for classification.

• MAGNET [24] is a graph attention network-based
model. It was proposed to capture the attentive
dependency structure among labels by using feature
and correlation matrices. Besides, the model uses a
BiLSTM to extract text features.

We also select and extract the evaluation results of
other competitive models that were reported in the works
mentioned above. It should be mentioned that the DocBERT
model [32] reported results of base and large BERT versions
on both Reuters-21578 and AAPD datasets. In our model,
we also use BERTbase based model (RoBERTa-base).
Therefore, we only compare our model with DocBERT
(base version) to make a fair comparison.

4.3 Experimental settings

For our model, we used only one GCN layer for
learning label representation. By doing experiments, we
found that the model achieved the optimal results (as
presented in Section 4.5). We set the embedding size
of the GCN layer as 768, after doing experiments with
different settings. We adopt RoBERTa-base for generating
document representations. We employ a fully-connected
neural network (768 input neurons and one output neuron),
with its weights W that are shared across all labels, and with
Dropout (0.2 rate). We train our model with a batch size of
16 and Adam optimizer with Weight decay (0.01 excluding
bias and LayerNorm). We also apply an initialized learning
rate of 5e − 5 with a linear schedule.

4.4 Results

Performance evaluation on reuters-21578 We first conduct
the performance evaluation on the Reuters-21578. This
dataset has the smallest number of documents among the
selected datasets, but it is highly skewed. Table 3 reports
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Table 3 Results on Reuters-21578 in terms of Micro-F1. Boldface
indicates the best method while the underlined one is the second best

Dataset Models Micro-F1 (%)

Reuters-21578 Kim-CNN+ 80.8

XML-CNN+ 86.2

HAN+ 85.2

LSTM+ 87.0

KD-LSTM+ 88.9

DocBERT+ 89.0

VLAWE 89.3

MAGNET 89.9

LR-GCN (Ours) 91.6

Symbol + indicates results are extracted in [32]. The upper group
is document-based models while the other for document-label-based
ones

evaluation results of different models on Reuters-21578 in
terms of Micro-F1. In this evaluation, we use this metric for
comparison because it is reported in many works that were
evaluated on this dataset. Furthermore, we do not compare
classification performance in terms of P @k and nDCG@k

since these results are not reported in these baselines.
As shown in the table, our model outperforms the others.

The proposed model achieved a better result of 1.7% compa-
red to MAGNET which is the second-best. This may come
from several significant differences between them. First,
MAGNET built the correlation matrix in the form of con-
ditional probability as proposed in [14]. However, this form
of calculation seems to be only suitable for capturing natural
dependencies of object labels in images as explained in
[14]. In contrast, our work models label correlation in a
modified form of point-wise mutual information which is
widely used for capturing word-word association in natural
language processing [15]. Consequently, the proposed
correlation matrix benefits from our model does not require
additional fine-grained schemes such as attention for GCN
as in MAGNET or re-weighted as in [14]. Second, our
model benefits from RoBERTa which was confirmed in
many works [31, 33] to be effective in extracting fine-
grained document information, whereas MAGNET applied
BiLSTM to learn word embeddings. The experimental
results confirmed the effectiveness of the proposed model.

Surprisingly, VLAWE [37] is a combination of a doc-
ument representation based on aggregating word embed-
ding vectors into document embeddings and SVM as a
classifier is slightly better than DocBERT (the base ver-
sion) [32]. It should be mentioned that [32] also reported
Micro-F1 of 90.70% when running BERTlarge on this
dataset. While this result is higher than both VLAWE and
MAGNET, it is lower than ours which only adopts a base

version of the BERT-based model (i.e. RoBERTa base).
This validates the effectiveness of the proposed model using
GGN for capturing both label correlation and semantics.

Performance evaluation on AAPD Next, we evaluate the
performance of the proposed model on the AAPD dataset.
For Micro-F1, our model once again achieves better results
compared to DocBERT [32] which achieved the second
best, as shown in Table 4. In terms of P @k and nDCG@k,
our model achieves the best results in almost all metrics
compared to the other works, as shown in Table 5. LSAN
outperforms other methods (lines 1st -11th in Table 5) on
AAPD. However, its results are lower than our work in
almost all metrics, except for P @5. It should be noticed
that we evaluated our model on this dataset without using
label embeddings because word labels in this dataset are not
available. As shown in Section 4.5, we argue that we can
improve the performance of the proposed model by using
the proposed label embedding method. One possible reason
is that our model benefits from the correlation and semantics
information of labels that are learned by GCN.

Performance evaluation on RCV1 Finally, we verify the
effectiveness of the proposed model by evaluating it on the

Table 4 Results on AAPD and RCV1 in terms of Micro-F1

Dataset Models Micro-F1 (%)

AAPD Kim-CNN+ 51.40

XML-CNN+ 68.70

HAN+ 68.00

LSTM+ 70.50

KD-LSTM+ 72.90

DocBERT+ 73.40

AttentionXML‡ 71.50

HA-Seq2Seq‡ 72.00

LR-GCN (Ours) 74.03

RCV1 RCNN÷ 68.60

XML-CNN÷ 69.50

HAN÷ 69.60

HLSTM÷ 67.30

HCSM÷ 85.80

HR-DGCNN-3� 76.20

HE-AGCRCNN� 77.80

LR-GCN (Ours) 88.03

For each dataset, boldface indicates the best method while the under-
lined one is the second best. Results are extracted: + in [32], ‡ in [8], �
in [21], ÷ in [9]. For each dataset, the upper group is document-based
models while the other for document-label-based ones
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Table 5 Results on AAPD and RCV1 in terms of P @k and nDCG@k

Datasets Models P@1(%) P@3(%) P@5(%) nDCG@3(%) nDCG@5(%)

AAPD XML-CNN∗ 74.38 53.84 37.79 71.12 75.93

HTTN× 83.84 59.92 40.79 79.27 82.67

DXML∗ 80.54 56.30 39.16 77.23 80.99

SGM∗ 75.67 56.75 35.65 72.36 75.35

AttentionXML∗ 83.02 58.72 40.56 78.01 82.31

EXAM∗ 83.26 59.77 40.66 79.10 82.79

LSAN∗ 85.28 61.12 41.84 80.84 84.78

SLEEC† 81.96 57.48 38.99 77.65 81.59

LAHA† 84.48 60.72 41.19 80.11 83.70

LR-GCN (Ours) 86.50 62.43 41.66 82.52 85.48

RCV1 Bow-CNN⊥ 96.40 81.17 56.74 92.04 92.89

Kim-CNN⊥ 93.54 76.15 52.94 87.26 88.20

XML-CNN⊥ 96.86 81.11 56.07 92.22 92.63

HTTN× 95.86 78.92 55.27 89.61 90.86

DXML∗ 94.04 78.65 54.38 89.83 90.21

SGM∗ 95.37 81.36 53.06 91.76 90.69

AttentionXML∗ 96.41 80.91 56.38 91.88 92.70

EXAM∗ 93.67 75.80 52.73 86.85 87.71

LSAN∗ 96.81 81.89 56.92 92.83 93.43

SLEEC⊥ 95.35 79.51 55.06 90.45 90.97

FastXML⊥ 94.62 78.40 54.82 89.21 90.27

HR-DGCNN÷ 95.29 50.32 55.38 90.02 90.28

HG-Transformer÷ 95.80 80.98 55.96 90.03 91.96

LR-GCN (Ours) 97.13 84.29 58.45 94.98 95.38

For each dataset, boldface indicates the best method while the underlined one is the second best. Results are extracted: ∗ in [12], † in [13], × in
[6], ⊥ in [1], ÷ in [10]. For each dataset, the upper group is document-based models while the other for document-label-based ones

RCV1 dataset. A challenge of this dataset is that it is a large-
scale dataset in which training samples are much fewer than
testing samples. It should be noticed that although work in
[8] (also in many other works) reported its results on RCV1
dataset, it uses almost all of the samples for training (i.e.
802,414/1,000/1,000 for training/testing/validation) instead
of using the same split as the original dataset. Therefore, we
skip reporting these results for fair comparisons.

For RCV1, our model outperforms all prior SOTA
methods in all metrics. In terms of Micro-F1 the proposed
model outperforms HCSM [9] (the second-best) and HE-
AGCRCNN [21] by large margins of 2.23% and 10.23%,
respectively. It should be mentioned that HE-AGCRCNN
outperformed many traditional (e.g. HR-LR, HR-SVM)
and deep learning models (e.g. HR-DGCNN-3, Capsule-
B), as presented in [21]. In terms of P @k and nDCG@k,
our model is superior with a large margin compared to
LSAN which keeps showing better results compared to
deep-learning models and even transformer-based models
in almost all metrics (i.e. except for P @1). XML-CNN

follows LSAN with a tiny gap. These show the effectiveness
of the proposed model for dealing with the multi-label
classification problem.

As mentioned above, while both our model and
LSAN use document and label information, our method
outperforms LSAN in all performance metrics. There are
two possible reasons for this: (1) LSAN did not use
label correlation. This model only used label semantics
to explicitly determine the semantic relation between each
word-label pair via an attention mechanism. In contrast,
apart from considering the label semantics, our model
benefited from label correlations, in which the proposed
label correlation matrix is built to guide the information
propagation among nodes in the graph. This further
confirms our idea that using GCN to learn over the
proposed correlation matrix is helpful for representing label
information; (2) while LSAN adopted Bi-LSTM for input
text representation, we employed RoBERTa which has
been shown as a powerful tool for extracting fine-grained
document information [31, 33].
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4.5 Ablation studies

In this section, we investigate other aspects of the
model, including the effects of the FCNN component,
the correlation matrix, node embedding methods, sensitive
parameters of GCN, and the size of training data. These
studies are conducted on the Reuters-21578 dataset because
of available label words and the faster training and testing
time.

4.5.1 Effects of the fully-connected neural network
component

As mentioned above, one of our improvement is that we add
a fully-connected neural network on top of the model as a
classifier. In this study, we test the proposed work without
this component to measure its contribution to classification
performance. Particularly, each label embedding vector Hi

will be combined using dot-product with the document
embedding T ′ to produce the predicted score, as applied
in other works [14, 24]. As shown in Fig. 4, the proposed
model (LR-GCN) is superior compared to the model with
dot-product, especially 2.1% in terms of Micro-F1. One of
the reasons for this may be that embeddings of labels and
the document are not good enough to directly output the
predicted score. They demand a subnet to continuously learn
their representations and predict final results.

4.5.2 Effects of different correlation matrix methods

We first evaluate our model with different edge-weight cal-
culation methods that are used for building the correlation
matrix. This enables us to show the effectiveness of the pro-
posed correlation matrix. In this study, we consider another
correlation matrix, named Edge=1, where the edge weight
of two co-occurrence label nodes is assigned by 1. As shown
in Fig. 5, the proposed correlation matrix shows an improve-
ment compared to the other. One possible reason is that
Ai,j =1 for every pair of co-occurrence label nodes is not

enough for representing label correlation. This confirms the
role of the proposed correlation matrix in propagating label
information among nodes in GCN.

4.5.3 Effects of node embedding methods

In our work, we propose to use external language resources
to enrich label word embeddings. In this study, we conduct
experiments on the proposed model under other node
embedding methods. To do that, we first test the proposed
model without using node features, named None (i.e. feature
matrix X = I as an identity matrix). After that, we
further investigate the performance of the proposed model
under popular word embedding methods such as Word2vec
[26], Glove [27], FastText [28]. Figure 6 shows two main
points: (1) the proposed node embedding with enrichment
shows better results compared to the others. This confirms
the idea of using external information for enriching label
node embeddings and also enables thinking of applying this
idea for other applications such as specific domains (e.g.
medical and legal documents) and low resource languages
(e.g. Vietnamese, Japanese) where powerful embeddings
may not be available; (2) The evaluation results also confirm
that using label embeddings as node features improves
performance classification.

4.5.4 Effects of sensitive parameters of GCN

In this study, we first evaluate our model under various
GCN layer numbers including one layer with an embedding
dimension of 768, two layers with embedding dimensions
of 768 and 1024, three layers with embedding dimensions
of 768, 1024, 1024, and four layers with embedding
dimensions of 768, 1024, 1024, 2048. As shown in Fig. 7a,
the model achieves optimal results with only one GCN layer
while increasing the layer number leads to degradation of
classification performance. This may come from that we use
the powerful word embedding method that is trained on a
large text corpus to generate node embeddings. After that,

Fig. 4 Comparison of different
methods for building the
classifier
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Fig. 5 Comparison of different
methods for building the
correlation matrix

the embedding of every single node in the graph will be
gradually accumulated from its intermediate neighborhoods
when increasing the number of GCN layers. This leads to
being over smoothing. This performance drop is consistent
with results that are mentioned in [25] and [15].

We then vary the GCN embedding dimension and
measure the classification performance. As shown above,
our model achieved good results with only one GCN layer.
In this study, we perform the model with one layer under
varying embedding dimensions of 256, 512, 768, 1024, and
2028. As shown in Fig. 7b, the model reaches optimum
performance at the dimension of 768. Furthermore, we
can observe that too low dimensional embeddings may
not propagate label information to the whole graph well,
while highly dimensional embeddings do not improve
performance.

4.5.5 Effects of the size of training data

Finally, we test the proposed work with different training
data proportions to explore the sensitivity of our correla-
tion matrix construction as well as the model. In this study,
we also evaluated several best-performing models including

XML-CNN, AttentionXML, and LSAN. For these base-
lines, we keep the settings as presented in their papers. Only
for LSAN, we used Word2vec for word embeddings due
to lacking pre-trained embeddings provided in its source.
Figure 8 compares evaluation results of the models with data
proportions of 0.05, 0.10, 0.25, 0.50, and 0.75. As shown in
the figure, our model achieves competitive results compared
to the other ones. Especially, the proposed model is consis-
tently higher than the baselines at lower data percentages
(less than 0.25). This means that the proposed correlation
matrix as well as our model are not sensitive to training data
proportions and can be applied in practical cases, in which
only limited training samples are provided.

5 Conclusion

In this paper, we proposed a new model for multi-label
text classification. Our model explores label correlation
and semantics by using graph convolutional networks. To
do that, we design an effective correlation matrix that is
based on the occurrence and co-occurrence probabilities of
labels. For node features, we enrich label embeddings using

Fig. 6 Comparison of different node embedding methods
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Fig. 7 Test parameter sensitivity
of GCN

external language resources. Correlated label information
learned from GCN is combined with fine-grained document
representation generated from a sub-net for classification.

Experimental results show three important points. Firstly,
our model outweighs prior state-of-the-art methods. This
validates the effectiveness of the proposed model. Secondly,

Fig. 8 Test performance (%) by varying training data proportions
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the proposed correlation matrix and enriching node
embeddings improve classification performance. Finally,
increasing the number and dimensionality of GCN layers
does not improve the quality of classification.
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